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Letters

Comnrnenb on “Propagation Modes, Equivalent

Ch’cui~ and Characteristic Terminations for

Malticonductor Transmission Uines with

Inhomogeneous Dielectrics”

Y. Y. SUN

Abstract-This letter intends to recogrk the correct expression of tie
eharaeterfstic admittance matrix of multiconductor transtniwdon lines.

For uniformly coupled lossless (n+ I)-conductor transmission

lines, the vokages and currents are described by the equation

pair

: V(x,s) = – S[L]Z(X,S) (la)

~zx& ( ,~)= –s[cl v(w) (lb)

where V and I denote n x 1 voltage and current vectors, respec-
tively; [L] and [c] are n x n per-unit-length inductance and
capacitance matrices, respectively. The distance x is measured
along the line, ands is the Laplace transform variable.

Assume V and Z both proportional to the same factor exp

( –~~x) and Y‘.@,.j = ( – 1)1/2, then (la) and (lb) are reduced to

V= vIL]l (2a)

I=o[c]v (2b)

where u = u/’ k is the velocity of wave propagation. Therefore

+ V=[L][C] v (3a)

-j Z=[C][L]Z. (3b)

In case the conductors are embedded in a transversely inho-
mogeneous dielectric medium, there always exist voltage and
current modal matrices [P] and [Q] such that

[~l-’[Ll[cl[~l=[Dl (4a)

[Q]-l[Cl[Ll[Ql=[~] (4b)

where [D] is a diagonal matrix, viz.,

:1
V;* o

[~]= ‘$2 .

0 ““.;2
Oi is the ith mode wave propagation velocity. Taking transpose
of these equations, one has

[P]qc][q([P]-’) T=[D] (5a)
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[QITILIICI([Q]-’) T=[D] (5b)

where [C] and [L] are assumed symmetric and the superscript T
indicates transpose. Comparison of (4a) and (5b) as well as (4b)
and (5a) will lead one to conclude that

[P] T[Q]=[Q]~[P]=[d] (6)

where [d] is a diagonal matrix.
Marxl showed that the characteristic admittance matrix of the

multiconductor transmission line is

[YO]=[Q].[Q]; (7a)

[YO]=[Q].[P]~l (7b)

where [Q]. and [P]. are such that their columns correspond to
those of [Q] and [P] but normalized.

However, these expressions happen to be incorrect. To verify
this assertion, consider the symmetrical case

Now,

which

[Ll=[: y] (8a)

[c]=[_: -:]. (8b)

it is readily shown that the normalized modal matrices
satisfy the conditions stated in Marxl are

[1 1

[~1”=~ ! -1
(9a)

[1 1
[Q]”=+ : -1 “

(9b)

So, from (7),

[1
[Y~]= : y . (10)

This is incorrect. The correct expression should be

(11)

This expression was obtainedl through a groundless way by

picking up

(12)

1K. D. Marx, “Pro~agation modes, equivalent circuits, and characteristic
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‘Q]n=k=%1“3)
so as to fit (7b).

Actually, the characteristic admittance matrix in (11) is fourid
via the well-known formulation [1]

[1[Yo]=[Q] diag[o][Q]-’IC] =[Q]diag ~ [Q]-’[L]-’

(14a)

or

[YO]=[L]-’[P]diag
[1

~ [P]-’ =[c][P] diag [O][P]-’.

(14b)

The symmetry of (14) is proven in general in [1].
Equations (14) can also be derived in a slightly different

manner. Treating (la) and (lb) as if they were simple transmis-
sion line equations, one will have

[Yo]=([c][q)-’qc] (15a)

or

[Yo]=[L]-l([L][ c])’/2. (15b)

The equality of these two expressions is checked by employing
the relation

[L]f([c][L])=”f([ L][c])[L] (16)

where f([C][L]) is a function of [C][L]. Equation (16) is easily
established as follows. Equation can be rewritten as

([L][Q])-’[L][C]([ L][Q])=[D]. (17)

Let j(p) bean arbitrary function of p, then j([C][L]) and [C][L]

commute. So, they share the same modal matrix for similarity

transformation [2]. That is, from (17)

([ L][Q])- ‘f([L][C])([L][Q]) =f([D]). (18)

Similarly, from (4b), one can have

[Q1-’-f([Cl[Ll) [QI=~[DI. (19)

Equating (18) and (19) yields (16).
The equivalence of (14) to(15)is seen bytaking into account

of

[Q][~]-1’2[Ql-’ =[Q]diag [o][Q]-’=([C]L])] 2-’/2

(20a)

[1[P][D])/2[P]-l=[P] diag ~ [P]-l=([L][C])l/2.

(20b)

In addition to the discrepancy indicated above, there are two
more reasons to believe (14) or (15), rather than (7), correct.

1) In case the transmission line is a simple two-conductor
structure, (14) justifies

c 1/2

()

yo= ~ (21)

while (7) gives

Y~=l. (22)

2) For the simple transmission line, the energy transmission is

equipartitioned in electric and magnetic energy densities [3].

That is

Llj2 = CV:. (23)

A corresponding relation for mukiconductor case is obtained by
utilizing (14). That is

~~[L]q= Vf~[ YoIIL][ To] Jj= ~yT[ c1Z. (24)

The subscript f denotes one-direction, say forward, going wave.
Nonetheless, neither (7a) nor (7b) will give rise to (24).
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Rep@ 2 by Kenneth D. h4arx3

The above remarks by Y. Y. Sun regarding errors in our
treatmentl of the characteristic admittance matrix are simply
incorrect. The difficulty seems to stem from a misunderstanding
of the definition of orthogonality and normalization that is usedl

4.7=8ij (1)

where ~ is the ith current eigenvector, ~ is the ~th voltage
eigenvector, and rSij is the Kronecker delta. In the following, we
reiterate the arguments which led to our results, and demon-
strate that those results are indeed consistent and correct.

In Section 11 of our paper, 1 the following relations are derived

for current and voltage vectors in a propagation mode:

V= oLI (2)

I= vet’. (3)

(The equation numbers have been changed from those of the
original paper. 1, The resulting eigenvalue equation for V is

(LC) V= + V. (4)

It is then pointed out that the current eigenvectors ~ are related

through (3) to the voltage eigenvectors ~.. which are solutions of

(4). An equally valid alternative is to use (2) to obtain ~ from

IL+lF
1

where the propagation velocity vi is the inverse square root of

the eigenvalue 1/u~ in (4).

Through a straightforward argument, it is shown that current
and voltage eigenvectors corresponding to different modes are
orthogonal in the following sense:

1.J$=O (5)

unless the propagation velocities Oi and o, are equal. In the
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degenerate case q = t+, one can always orthogonalize through a

generalization of the Gram–Schmidt procedure. Although not

stated in the original paper, * a corollary to this result is that ~.~

and F(. ~ are not zero in general for i #j. The reason for this is

that the matrix ~C is not symmetric, i.e., not Hermitian, or

self-adjoint. Furthermore, one can use (2) and (3) and the fact

that L and c are positive definite to show

~.Jf#o.

Hence, we are led to the definition of orthonormal sets of

voltage and current eigenvector pairs as given in Section III-C of

the original paper] and repeated in (1) above. This is an ap-

propriate normalization for eigenvectors of an asymmetric

matrix and its adjoint (LC and CL). We note that then a mode

with voltage ~ and current ~ has unit power (power= ~.J = 1).

Now, because of this definition of the normalization of eigen-

vectors, and because of the relationship (2) or (3) between the ~

and the ~, it is clear that there is a constraint on the eigenvectors

that is inconsistent with the usual definition of normalization:

~.~=1 (6)

~.~=1. (7)

It is this definition that Sun uses to obtain his modal matrices

[[~1”=+;
11

[[Ql”=~ 1

in the three-conductor system that he

ample. It is not true, as he has stated,

1

–1 11
–1 1
proposes as a counterex-

that “it is readily shown

tha; [these iire the] normalized modal matrices which sa~isfy the

conditions stated’ .“ It is not true because the eigenvectors in the

original paper] satisfy ( l)–(3), and not (6) and (7). The eigenvec-

tors in [P],, and [Q ]n do not, in general, satisfy the requisite

equations (2) and (3). Hence, the supposition upon which Sun’s

comments are based is untrue.

Now consider the steps in the derivation of the formula for the

characteristic admittance matrix YO. Since there appears to be

some confusion regarding this derivation, somewhat more detail

will be provided than was given in the original paper. i For a line

composed of n + 1 conductors, (1) implies the linear indepen-

dence in n-space of both sets of eigenvectors ~,1,, i= 1,2,. ... n.

Let Mv anti MI be the matrices whose columns are voltage and

current eigenvectors normalized according to (l). Hence

ikfvM~= MIM; = U

where U is the identity matrix. This means that

M; 1= MIT.

Then it can be seen that it is possible to express an arbitrary

vector E in the form

E=MVA

=~Az~

where A, the vector whose components are the eigenvector

expansion coefficients, is given by

A = iW;E

i.e.,

A,= &E. \

917

Now, consider a wave traveling in the forward direction,
which we take to be the z-direction. Let this wave be given by
Vflz, t), a function of space and time. If

A = MITVf

then

Vf= ~Ai~ (8)

1

at any point in space and time. The current in this forward wave
is

(9)

The reason that (9) follows from (8) can be simply stated as

follows: when the voltage vector is given as the superposition of

voltage eigenvectors as in (8), and the current vector is written as

the superposition of the corresponding current eigenvectors, the

coefficients in the two expansions must be the same, in order

that the telegrapher’s equations

(10)

(11)

are satisfied. Since the solution to (1 O) and (11) must be unique,

this is the only result possible.

A more detailed explanation of this same point: let us rewrite

(8), showing the functional dependence of ~ and A, cm z and t

where Ai(z – Oit) is the ith component of

A = kflTfi(Z, t).

The components of the vector A can be evaluated as functions

of their respective arguments at any time tby sampling along the

entire (infinite) line, or at any position z by sampling over all

time. The reason that the components must have the functional

form ~l(z – oit)is that in this way V’~z, f) consists of a forward

wave satisfying the equation

obtained when (10) and (11 ) are combined. Since the solution to

this problem must be unique, the representation

must be unique. IQow if the voltage is given by this expression,

we can use either (10) or (11) to evaluate the current.

(1 1). Then

azf(z, t)
—=– C$~A,(z–oZt)V/

az 1

We will use

where we have used (3) to eliminate u, CVi, and ~J represents

differentiation of A, with respect to its single argument. Integrat-

ing with respect to z, we obtain
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Zf(Z, t)= ~ AI(Z – Oit)~
1

or

1,= MIA

as claimed in the original paper. 1 Since

A = M;Vf

we have

If= MJ@j

which shows that the correct definition of the admittance matrix

is

~0 = MIMIT. (12a)

((8a) in the original paper’). This is true only if the eigenvectors

are properly normalized.

Suppose that the eigenvectors are not normalized. We can still
write

where

A= M;’VF

In this case we no longer have

But precisely the same sort of argument as that just preceding

results in

Y~= n41M; 1 (12b)

((8b) in the original paperl) as long as the eigenuectors satisfi (2)
and (3).

In the original paper’ we used as an example a three-conduc-
tor line with symmetric conductors, but inhomogeneous dielec-
tric. In this case, the inductance and capacitance matrices have
the form given by Sun’s (8a) and (8b). We derived his formula
(11) for the characteristic admittance matrix by a direct applica-
tion of ( 12b) above, using appropriate unnormalized eigenvec-
tors, which is completely justified as noted above and explicitly
stated. 1 Hence, Sun is wrong in asserting that our approach is
groundless.

Specifically, the eigenvector pairs used in that case were

and

()V2= _\ , Z2=+(J
o

where the even- and odd-mode characteristic impedances are

‘=s ‘O=i=
(we have used Sun’s notation for the components of K and CT)
Using the even- and odd-mode propagation velocities

VI= 1
v~ =

1

V(L+M)(C-K) ‘ V(L - M)(c+ K)

it is easily seen that these eigenvectors satisfy (2) and (3). Then

[
~ ‘0–J

and ( 12b) yields

[1.111)

which is identical to Sun’s (1 1). To compare this with (12a)

above, note that the normalized eigenvector pairs are obtained

by multiplying the unnormabzed ones by ~~, so that

This solution for the normalized eigenvectors is unique. This

clearly points out the constraint on the eigenvectors referred to

in connection with (6) and (~. Then

and (12a) yields the identical result (13) for Y@

As further proposed counterexamples, Sun claims that our

formulas yield incorrect results for the characteristic admittance

of a simple two-conductor line and for equipartition of energy in

it. But from (I)–(3) one sees that the normalized eigenvectors for

the simple line are

‘=($)’”‘=(:)”4
(Recall that the propagation velocity is u = l/~.) Again, this

solution for the eigenvectors is unique. Hence, (12a) yields

Yo=z/v

f

c.
z

as required. Furthermore,

L12=~ = CV2

so correct equipartition of energy is obtained for the normalized .

eigenvectors. Since voltage and current in any wave is repre-

sented by a single constant times the respective eigenvectors, it is

clear that equipartition is obtained for any wave.

These results all indicate that Sun’s objections are simply

based on a misunderstanding of our definition of normalization.

There is therefore no reason to question the results in the

original paper. ]


