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Comments on “Propagation Modes, Equivalent
Circnits, and Characteristic Terminations for
Multiconductor Transmission Lines with
Inhomogeneous Dielectrics”

Y. Y. SUN

Abstract—This letter intends to recognize the correct expression of the
characteristic 2dmittance matrix of multiconductor transmission lines.

For uniformly coupled lossless (n+ 1)-conductor transmission
lines, the voltages and currents are described by the equation
pair

7‘1; V(x,5)=—s[L}(x,s) (1)

(1b)

where V and I denote nX 1 voltage and current vectors, respec-
tively; [L] and [C] are nXn per-unit-length inductance and
capacitance matrices, respectively. The distance x is measured
along the line, and s is the Laplace transform variable.

Assume } and I both proportional to the same factor exp
(—Jjkx) and s =j, j=(—1)!/2, then (la) and (1b) are reduced to

%I(x,s)= —s[CI¥(x,5)

V=o[L|I (2a)
I=o[C]V (2b)
where v=w/ k is the velocity of wave propagation. Therefore
Ly=iuicy (3a)
v
Lr=[cn. (3b)
v

In case the conductors are embedded in a transversely inho-
mogeneous dielectric medium, there always exist voltage and
current modal matrices [ P] and [Q] such that

[P17'[LICliP1=[D]
[QI7'[CHLIQ)=[D]

where [D] is a diagonal matrix, viz.,

oi2 O

(42)
(4b)

[D]=

@) o2
t; is the ith mode wave propagation velocity. Taking transpose
of these equations, one has

[PI"ICILY(P]™ ") =[D] (52)
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oYLl CcI(iel ) =([D]

where [C] and [L] are assumed symmetric and the superscript T
indicates transpose. Comparison of (4a) and (5b) as well as (4b)
and (5a) will lead one to conclude that

[PI"[Q]=[Q]"[P]=[d]
where [d] is a diagonal matrix.
Marx! showed that the characteristic admittance matrix of the
multiconductor transmission line is

[Yol=[QLIQlr
[Yol=[QLP)."

where [Q], and [P], are such that their columns correspond to
those of [Q] and [P] but normalized.

However, these expressions happen to be incorrect. To verify
this assertion, consider the symmetrical case

w=| o 1

(5b)

©®

(72)
(70)

ML (8a)

1= _¢ K]

Now, it is readily shown that the normalized modal matrices
which satisfy the conditions stated in Marx' are

(8b)

Pl=—=[] 1] ©2)
[Q]n=71_2—“ _” (9b)

So, from (7),
vol=[5 9] (10)

This is incorrect. The correct expression should be
\/C—K +\/C+K \/C-—K _\/C+K
1 L+M L-M L+M L-M
[Yol=>
C-K “\/C+K \/C—K +\/C+K
L-M L+M L-M

L+M
(1n

This expression was obtained’ through a groundless way by

picking up
_[1 |
rh=[{ _1]
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[c-k C+K
L+M L-M
[Ql.= 13)
C-K . [C+K
L+M L—M

so as to fit (7b).
Actually, the characteristic admittance matrix in (11) is found
via the well-known formulation [1]

[Ye)=10] disg [1[Q)[C1=[0] dias |  [[@1~'(L1™"

(14a)
or

[¥ol=[L]"'[P) ding [ J [P =[CI[P] diag o] P] "

(14b)

The symmetry of (14) is proven in general in [1].
Equations (14) can also be derived in a slightly different
manner. Treating (1a) and (1b) as if they were simple transmis-

sion line equations, one will have
[Yo]=(CIILD ™[] (152)

or

[Yol=[L]"'(IL][cD'~ (15b)

The equality of these two expressions is checked by employing
the relation

[LIAACHLD =ALLNCDIL] (16)
where f({CJL]) is a function of [C][L]. Equation (16) is easily
established as follows. Equation (4b) can be rewritten as

(LIeh ' ILICI(LIeD =[D]. (a7)
Let f{ 1) be an arbitrary function of g, then fA{C][L]) and [C][L]
commute. So, they share the same modal matrix for similarity
transformation [2]. That is, from (17)

(L)~ 'ALLICDALIE) =AIDP)). (18)
Similarly, from (4b), one can have
[Q17'ALCHLDIQ=A1D]. (19)

Equating (18) and (19) yields (16).
The equivalence of (14) to (15) is seen by taking into account
of

[QI[P1™ (@] " =[Q] diag [¢s][Q]'=([CI[L])~"/
(20a)

[PI[D]/’[P]™' =[P] diag [ ][P]“=([L][CD”2‘

S |

(20b)

In addition to the discrepancy indicated above, there are two
more reasons to believe (14) or (15), rather than (7), correct.
1) In case the transmission line is a simple two-conductor

structure, (14) justifies
Cc\1/2
ro=(z)

Y0=1.

#2))
while (7) gives
(22)
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2) For the simple transmission line, the energy transmission is
equipartitioned in electric and magnetic energy densities [3].
That is

LI?=CVA (23)

A corresponding relation for multiconductor case is obtained by
utilizing (14). That is

KL= VI Yol L[ Yol V= V{[C1V}. (24)

The subscript f denotes one-direction, say forward, going wave.
Nonetheless, neither (7a) nor (7b) will give rise to (24).
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Reply? by Kenneth D. Marx’

The above remarks by Y. Y. Sun regarding errors in our
treatment' of the characteristic admittance matrix are simply
incorrect. The difficulty seems to stem from a misunderstanding
of the definition of orthogonality and normalization that is used!

1V,= 8ij (1)
where I, is the ith current eigenvector, ¥, is the jth voltage
eigenvector, and §; is the Kronecker delta. In the following, we
reiterate the arguments which led to our results, and demon-
strate that those results are indeed consistent and correct.

In Section II of our paper,! the following relations are derived
for current and voltage vectors in a propagation mode:

V=oLl )
I=uCV. 3)

(The equation numbers have been changed from those of the
original paper.') The resulting eigenvalue equation for V is

(LCYV= ~1—2 V.
v

@
It is then pointed out that the current eigenvectors I, are related
through (3) to the voltage eigenvectors ¥, which are solutions of
(4). An equally valid alternative is to use (2) to obtain [, from

1,=—1~L"V,
vl

where the propagation velocity o; is the inverse square root of
the eigenvalue 1/0? in (4).

Through a straightforward argument, it is shown that current
and voltage eigenvectors corresponding to different modes are
orthogonal in the following sense:

I-V.=0

L)

)

unless the propagation velocities v; and v, are equal. In the

2Manuscript received February 20, 1978.
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degenerate case v, =v,, one can always orthogonalize through a
generalization of the Gram-Schmidt procedure. Although not
stated in the original paper,' a corollary to this result is that 1,-1,
and ¥,-¥, are not zero in general for i=/. The reason for this is
that the matrix LC is not symmetric, i.e., not Hermitian, or
self-adjoint. Furthermore, one can use (2) and (3) and the fact
that L and C are positive definite to show

1V, 0.

Hence, we are led to the definition of orthonormal sets of
voltage and current eigenvector pairs as given in Section ITI-C of
the original paper' and repeated in (1) above. This is an ap-
propriate normalization for eigenvectors of an asymmetric
matrix and its adjoint (LC and CL). We note that then a mode
with voltage ¥, and current I, has unit power (power= VI, =1).

Now, because of this definition of the normalization of eigen-
vectors, and because of the relationship (2) or (3) between the I,
and the ¥, it is clear that there is a constraint on the eigenvectors
that is inconsistent with the usual definition of normalization:

vv,=1 )
I4=1. )

It is this definition that Sun uses to obtain his modal matrices

]l ]

[Q}n=~1——[} N

in the three-conductor system that he proposes as a counterex-
ample. It is not true, as he has stated, that “it is readily shown
that [these are the] normalized modal matrices which satisfy the
conditions stated'.” It is not true because the eigenvectors in the
original paper’ satisfy (1)—(3), and not (6) and (7). The eigenvec-
tors in [P], and [Q], do not, in general, satisfy the requisite
equations (2) and (3). Hence, the supposition upon which Sun’s
comments are based is untrue.

Now consider the steps in the derivation of the formula for the
characteristic admittance matrix ¥,. Since there appears to be
some confusion regarding this derivation, somewhat more detail
will be provided than was given in the original paper.' For a line
composed of #+1 conductors, (1) implies the linear indepen-
dence in n-space of both sets of eigenvectors V,1I,, i=1,2,-- - ,n.
Let My, and M, be the matrices whose columns are voltage and
current eigenvectors normalized according to (1). Hence

MM =MMI=U
where U is the identity matrix. This means that
My =M.

Then it can be seen that it is possible to express an arbitrary
vector E in the form

E=M,4
=2 AV,
i
where A, the vector whose components are the eigenvector
expansion coefficients, is given by
A=M/E
i€.,

A,=1I-E. .

1
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Now, consider a wave traveling in the forward direction,
which we take to be the z-direction. Let this wave be given by
VAz,1), a function of space and time. If

A= M,TVf
then

®)

at any point in space and time. The current in this forward wave
is

V=S4V,
1

7
The reason that (9) follows from (8) can be simply stated as
follows: when the voltage vector is given as the superposition of
voltage eigenvectors as in (8), and the current vector is written as
the superposition of the corresponding current eigenvectors, the
coefficients in the two expansions must be the same, in order
that the telegrapher’s equations

14 af
KZ—_LW (10)
ol 14
E——CW (11

are satisfied. Since the solution to (10) and (11) must be unique,
this is the only result possible.

A more detailed explanation of this same point: let us rewrite
(8), showing the functional dependences of ¥; and 4, on z and ¢

V(=3 A= v, ®)

where A;(z ~v;t) is the ith component of
A=MV{z,1).
The components of the vector A can be evaluated as functions
of their respective arguments at any time ¢ by sampling along the
entire (infinite) line, or at any position z by sampling over all
time. The reason that the components must have the functional
form A,(z— v;¢) is that in this way V{(z,7) consists of a forward
wave satisfying the equation
2 2
0V -L vV
9z2 o2
obtained when (10) and (11) are combined. Since the solution to
this problem must be unique, the representation

Vi(z,t)= 2 A(z—v)V,

must be unique. Now if the voltage is given by this expression,
we can use either (10) or (11) to evaluate the current. We will use
(11). Then
ol(z,1) _
9z

- C% 2 A!(Z_@lt) Vt
— =3 oAz -0V,

=D 4/(z—- 0,01,
2

where we have used (3) to eliminate v,CV;, and A; represents
differentiation of A, with respect to its single argument. Integrat-
ing with respect to z, we obtain
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I(z,n)=Z A(z— o)1,

or

I=M;4
as claimed in the original paper.! Since

A = M ITI/f
we have

L=MM]V,

which shows that the correct definition of the admittance matrix
is
I_/O:MIMIT. (12a)
((8a) in the original paper'). This is true only if the eigenvectors
are properly normalized.
Suppose that the eigenvectors are not normalized. We can still
write

V=24,
I3

where
A=M;V,.
In this case we no longer have
M; =M.

But precisely the same sort of argument as that just preceding
results in

Yo=MM;" (12b)
((8b) in the original paper') as long as the eigenvectors satisfy (2)
and (3).

In the original paper! we used as an example a three-conduc-
tor line with symmetric conductors, but inhomogeneous dielec-
tric. In this case, the inductance and capacitance matrices have
the form given by Sun’s (8a) and (8b). We derived his formula
(11) for the characteristic admittance matrix by a direct applica-
tion of (12b) above, using appropriate unnormalized eigenvec-
tors, which is completely justified as noted above and explicitly
stated.! Hence, Sun is wrong in asserting that our approach is
groundless.

Specifically, the eigenvector pairs used in that case were

1
n=(1) 1=z(1)

e 1) m=z(0)

where the even- and odd-mode characteristic impedances are

L+ m o fL-M
Z=\c—x > %=\crx -

(We have used Sun’s notation for the components of I and C.)
Using the even- and odd-mode propagation velocities

1 1

V1= s V2=
V(L+M)(C—-K) V(L-M)(C+K)

and
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it is easily seen that these eigenvectors satisfy (2) and (3). Then

11

Mm.=(1 1 M Z, Z,

V_(l —1)’ -1

Z, Z,

and (12b) yields

1,1 11
L_1Z7Z ZT g, 3
211 1,1 )

Z, Z, Z. Z,

which is identical to Sun’s (11). To compare this with (12a)
above, note that the normalized eigenvector pairs are obtained

by multiplying the unnormalized ones by \/Z(z ) /2, so that

F0 ey ()

V1=

and
_1% i _~ /1 1
n=VE () B=Vaz (L)

This solution for the normalized eigenvectors is unique. This
clearly points out the constraint on the eigenvectors referred to
in connection with (6) and (7). Then

1 1 1 1
M=l VzZ, VZ, r. 1 | VZ VZ,
vz |1 -1 " a1 ~1

and (12a) yields the identical result (13) for ¥,

As further proposed counterexamples, Sun claims that our
formulas yield incorrect results for the characteristic admittance
of a simple two-conductor line and for equipartition of energy in
it. But from (1)-(3) one sees that the normalized eigenvectors for

the simple line are
_ L\1/4 C 1/4
v=(¢)" 1=(5)"

(Recall that the propagation velocity is v=1/VLC .) Again, this
solution for the eigenvectors is unigue. Hence, (12a) yields

Yo=1/V

as required. Furthermore,
LI?=VIC =CV?

s0 correct equipartition of energy is obtained for the normalized »
eigenvectors. Since voltage and current in any wave is repre-
sented by a single constant times the respective eigenvectors, it is
clear that equipartition is obtained for any wave.

These results all indicate that Sun’s objections are simply
based on a misunderstanding of our definition of normalization.
There is therefore no reason to question the results in the
original paper.!



